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I. INTRODUCTION

The need for careful, validation of the multicomponent
lattice Boltzmann �MCLB� equation simulation method �1�
must increase as the level of uptake of the method, in, e.g.,
microfluidics �2� increases. In 2002, Tolke et al. compared
the measured terminal velocity of drops, obtained with one
MCLB variant �3�, to analytic results but, to date, we believe
that no other quantitative and direct evaluation of MCLB
method’s interfacial hydrodynamics has been undertaken.
Our purpose in this short article is to update matters by per-
forming a challenging and discriminating validation of our
most recent MCLB algorithm, using for purposes of quanti-
tative comparison, analytical calculations of suspended drop
shapes, due to Taylor and Acrivos �4�.

In fact, a match to Taylor and Acrivos’ calculation �4� is a
demanding test for any of the main MCLB algorithms avail-
able �3,5,6� because, to conform with this analysis, it is nec-
essary, among other things, to keep both Reynolds number
Re and Weber number Wb small, to observe delicate shape
changes which would be corrupted by simulation method
artifacts such as interface pinning and faceting �7�, and to
simulate surprisingly large systems, in order to match Taylor
and Acrivos’ assumption of rest fluid at infinity.

This article is organized as follows. In Sec. II we setout
the background to the calculation we seek to perform, in Sec.
III we show how our continuum multicomponent lattice
Boltzmann simulations may be applied to this problem and
in Sec. IV we present our results. The detail of the lattice
Boltmann method we use, the embedded methodological de-
velopments and analysis is, contained in the Appendix.

II. BACKGROUND

In 1964, Taylor and Acrivos �4� calculated the shape of a
neutrally buoyant drop of red R, liquid moving at a constant
speed U, in a second infinite blue B liquid. The latter was
assumed to be at rest at infinity. In the notation of Taylor and
Acrivos �used throughout� the Weber and Reynolds numbers
of this problem are

Wb =
�aU2

�
, Re =

aU

�
, �1�

in which a is the undeformed radius, � the interfacial ten-
sion, and all other symbols have their usual meaning. We set
Taylor and Acrivos’ liquids’ viscosity and density contrast
parameters set to unity immediately:

k =
�R

�B
= 1, � =

�R

�B
= 1. �2�

In this case, Taylor and Acrivos’ expression for the steady,
axially symmetric drop shape, �parametrized only by the azi-
muthal coordinate � and including the effects of inertia, by
perturbing about Re=Wb=0, note� is simplified and may be
summarized as follows:

R���
a

= 1 + ���� , �3�

where

���� � − �WeP2�cos���� −
63

140
�

We2

Re
P3�cos���� , �4�

in which R��� is the radial distance, from the drop center of
mass, to the surface element with azimuthal coordinate �, Pn
denotes the Legendre polynomial of degree n, and, for k
=�=1, we compute that the constant �=9 /40. The deforma-
tion ���� given in Eq. �4� �the exclusive concern of this ar-
ticle� is measured in the centre of mass frame, so that �4�:

�
−1

+1

����d�cos���� = 0. �5�

For the expression in the right-hand side of Eq. �4� accu-
rately to describe a deformed drop it is clearly necessary to
have Wb /Re	1, in order to ensure the diminishing impor-
tance of higher order terms, which are not calculated. It is
also important to note that Taylor and Acrivos’ prediction,
which is supported by experiment �4,8�, assumes at the flu-
ids’ interface, a kinematic condition of mutual impenetrabil-
ity holds, the no traction stress condition and that the differ-
ence between the fluids normal interfacial stress contraction*t.j.spencer@shu.ac.uk
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is balanced by interfacial tension �9�. Accordingly, it repre-
sents a stringent test of the representation of appropriate
boundary conditions within our MCLB.

III. METHOD

We use an MCLB model for three-dimensional axisym-
metric flow, which is based on the rectangular D2Q9 single
component, single relaxation time variant �1� of Qian et al.
�10�, detailed in Refs. �11,12�, but generalized by the addi-
tion of a geometrical source term, which modifies the plane
Cartesian x-y Navier-Stokes and continuity equations, with
additional terms to produce an axially symmetric r-z descrip-
tion. That is, the y �x� Navier-Stokes equation may be trans-
formed into its cylindrically symmetric radial �axial� coun-
terparts. In the Appendix we develop and analyze an
appropriate multicomponent lattice Boltzmann method.
Based as it is on the work reported in Refs. �11,12�, the
interface model outlined in this Appendix is designed to pro-
duce passive advection of the component-distinguishing
phase field function �N and hence our MCLB model’s inter-
face, and it has an effective kinematic condition, to optimize
correspondence to continuum regime multicomponent hydro-
dynamics.

Simulations of initially spherical drops, placed on large
rectangular lattices, closed with periodic boundaries left to
right, to facilitate drop motion and second-order accurate no-
slip �13� conditions top to bottom, to inject dissipation, were
calibrated by mapping the Reynolds and Weber numbers as
follows �an asterisk indicates the corresponding lattice quan-
tity�:

Re =
aU

�
→

a*
xU*

x

�t

1

6
�2� − 1�


x2

�t

=
6a*U*

2� − 1
= Re*, �6�

Wb =
�aU2

�
→

�a*
xU*2
x2

�t
2

cs
2
�


x2

�t
2 a*
x

=
�U*2

cs
2
�*

= Wb*, �7�

where � is the LBGK relaxation time parameter, 
x ��t� are
its spatial �time� steps, cs is the speed of sound, and 
� the
interfacial density step. Note that in establishing the above
mappings we have used the usual expressions for the lattice
fluid viscosity and fluid pressure �1� and, also, the Laplace
Law. After a period of equilibration, the red drop fluid was
subject to a small, uniform body force to produce uniform
motion relative to red background.

Significantly, to first order, the error in measured Wb*:

��Wb*� =
1

cs
2��a*

a*
+

�U*

U*
+

��
��

�

� �8�

is relatively large, because the small interfacial tensions re-
quired, to promote measurable deformation and to restrict the
magnitude of the spurious velocities, only produce a small

interfacial density step, 
�. Note also that the calculations of
Taylor and Acrivos �4� apply to a system at rest at infinity
and that essential dissipation can only be inserted into the
corresponding simulations by imposing an explicit rest
boundary, which precludes the exclusive use of periodic
boundary conditions and force the system to be of finite size.

To make discriminating comparison with the calculations
of Taylor and Acrivos it is necessary to avoid the large error
associated with a measurement of We*. Accordingly, we
choose to measure amplitudes 	P2 
�� and 	P3 
��, as detailed
shortly, and to assess a relationship between them. This re-
lationship is very simply extracted by using Eq. �4� and a
little algebra, which reveals

	P2
��	�
P2�
	P3
��

=
1

2
Re*. �9�

Amplitudes 	P1 
��¯ 	P4 
�� were evaluated by means of a
conjugate gradients grid search optimization of the coeffi-
cients a1¯a4 in the finite expansion

���i� = a2P2��i� + a3P3��i� + a4P4��i� , �10�

where �i is the discrete azimuthal coordinate of a point on
the interface �see below�. As as consequence of the orthogo-
nality of Legendre polynomials, aj = 	Pj 
��. Note that the ex-
pression in the right-hand side of Eq. �10� includes the un-
calculated contribution from P4, to which point we shall
return.

A few remarks are in order before proceeding. �i� In the
expansion in Eq. �10�, the coefficient a1 describes the centre
of mass translation, �ii� for simulation data which conforms
to the assumptions implicit in the calculations of Ref. �4�, the
following inequalities must hold:


a2
  
a3
  
a4
, Re � 1, Wb � 1,
Wb

Re
� 1,

�11�

and �iii� Taylor and Acrivos do not compute and expression
for a1 and a4.

In Refs. �11,12� the interface between completely immis-
cible red and blue fluids is identified by contours of constant
value in phase field function

�N =
�R − �B

�R + �B
, �12�

the �sublattice� contour �N=0 defining the centre of the in-
terfacial region. Both our target calculations and simulation
have explicit cylindrical symmetry, accordingly, measured
interfacial position coordinates refer to the centre plane of
the drop. Sublattice positions x on the contour �N=0 were
determined in by second-order interpolation on the x coordi-
nate, of the phase field defined in Eq. �12�. At steady state,
the drop centre of gravity having been measured, we com-
puted the angular coordinate �i of points on the interface, the
corresponding radial distance from the centre of mass ri, and
the deformation

�i = tan−1� y*

x
�, ri = �x2 + y*2, ���i� =

ri

a
− 1. �13�
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Considerable care was found to be necessary to ensure
that simulations conformed with the conditions of the target
calculations �Eq. �11� above�. Most surprising were the size
of the external flow domain necessary to ensure the inequal-
ity

	P2
��  	P3
�� � 	P4
�� , �14�

and the simulation times to reach the steady state.

IV. RESULTS AND DISCUSSION

For all data presented, the lattice interfacial tension pa-
rameter was �*=1.0�10−4 �11�, the initial red drop radius
was 20 lattice units. Drop terminal velocities were typically
o�10−4� lattice units per time step. Appropriate Re and Wb
were calculated from Eqs. �6� and �7�. Fluids’ collision pa-
rameters were the ranges 1.0	�R/B	1.4. For the valid de-
formation data presented below, it became apparent that the
system dimensions, expressed in terms of the initial drop
radius a* were required to exceed a length of approximately
40a* between periodic images and �i.e., in the flow direction�
and a transverse distance of approximately 2a* from the
symmetry axis to the cylindrical, no-slip boundary.

Clearly, care must be exercised to restrict error associated
with spurious velocities, induced by the interface algorithm
�11�. Figure 1 is a rectangular stream function, evaluated in
the center plane of the simulation, associated with spurious
flow. The spurious velocity has a maximum value in the
central interface. Figure 2 shows that the variation of the
maximum measured value of the spurious velocity vmax in
lattice units, divided by the product of the collision param-
eters, varies weakly with collision parameters, as was first
noted by Gunstensen et al. �14�. Gunstensen et al. also
pointed out that microcurrent activity should be, broadly,
proportional to the interfacial tension parameter �constant for

this data set, note�. For present purposes, we remark that, for
all data presented here, the spurious flow has entirely negli-
gible effects

vmax

U*
	

1.26 � 10−6

7.9 � 10−4 = 1.53 � 10−3, �15�

where we have take the value of U* which characterizes the
data of Fig. 3, discussed below.

The dominant contribution, of amplitude 	P2 
��, corre-
sponds to an oblate deformation, as demonstrated in the data
of Fig. 3. The latter shows, as a function of the azimuth �,
the computed oblate deformation of a drop of initial radius
20 lattice units, with a measured steady-state velocity of
U*=7.9�10−4 lattice units per time step and a very small
interfacial pressure step of 1.7�10−5 lattice units, corre-
sponding to physical Wb=0.074 �Eq. �7�� and physical Re
=0.222 �Eq. �6��, Wb /Re=0.33. The simulation lattice di-
mension was 800�600 lattice units. Measured interfacial

FIG. 1. Rectangular stream function of the spurious flow �or
interfacial microcurrent� of a centrally placed circular drop, initial
radius 20 lattice units, on a lattice of 100�100 lattice units. Data
were obtained for separated fluids with relaxation parameters �R

=�B=1.0. The maximum spurious velocity occurs where stream
function contours are densest, which corresponds to the center of
the interfacial region.
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FIG. 2. Maximum microcurrent velocity vmax divided by the
product of the collision parameters for the range of the latter used in
measurements of deformation. All data were obtained with interfa-
cial tension parameter �*=1.0�10−4, used for all the data
presented.
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FIG. 3. Measured steady-state deformation of a drop of initial
radius 20 lattice units with physical Wb=0.107, Re=0.221. Mea-
sured interfacial points are shown as open squares; the solid line
corresponds to the optimum fit to Eq. �10�, for which the measured
amplitudes are given in Table I.
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points are shown as open squares; the solid line corresponds
to the optimum fit to Eq. �10�, obtained as outlined above
with computed, amplitudes �grid-searched coefficients
a2–a4�, together with Taylor and Acrivos’ theoretical values
�evaluated with Wb=0.074, Re=0.222�, are summarized in
Table I. We note that this data satisfies all the required in-
equalities, expressed in Eq. �11�.

To illustrate the need for care in selecting simulation pa-
rameters, and, in particular, the need to calculate the coeffi-
cient a4, Fig. 4 and Table II show equivalent results for
Wb=0.021, Re=0.019, this time with ratio Wb /Re=1.09.
This data was obtained for a narrower lattice, of 800�400,
lattice units. Now, the measured value of the unpredicted
coefficient a4 has the largest value. The convergence of the
expression in Eq. �4� is therefore called into question, by the
fact that inequalities in Eq. �11� are not all met and there is a
qualitative difference between the deformations represented
in Figs. 3 and 4.

Returning to the data of Fig. 3 and Table I, it is possible to
reassess this data, avoiding the error associated with the We-
ber number Wb, Eq. �8�. We evaluate the left-hand side of
Eq. �9� with the data of Table I:

	P2
��	�
P2�
	P3
��

=
�2.33 � 10−2�2

4.53 � 10−3 = 0.119, �16�

which is within 7% of �half the value of� the measured Rey-
nolds Number for this data. Given the testing nature of this

validation �the maximum to minimum surface deformation
shown in Fig. 3 is about 5% of the undeformed initial drop
radius� this agreement is excellent.

For any simulation of sufficient size, conforming with the
conditions set out in Eq. �11�, the degree of agreement ob-
tained by direct comparison between measured deformation
and Taylor and Acrivos’ expression is typified by that in
Table I.

V. CONCLUSION

A direct, qualitative comparison between the measured
deformation of a drop, obtained with a three-dimensional
version of our current multicomponent lattice Boltzmann
equation simulation method for completely immiscible con-
tinuum, multicomponent fluids �11,12� with the analytical
predictions of Taylor and Acrivos �4� reveals reasonable
quantitative agreement, as shown in Table I. By recasting this
data to avoid the error in the measured Weber number �see
Eq. �8�� the agreement becomes excellent. These results tend
to demonstrate that an appropriate form of multicomponent
lattice Boltzmann simulation can be applied with confidence
to continuum scale hydrodynamics.

APPENDIX A

In this appendix we present an account of the lattice
Boltzmann model used in this article, together with support-
ing methodological developments and analysis.

1. Continuum multicomponent lattice Boltzmann simulation

Several multicomponent lattice Boltzman �MCLB� algo-
rithms exist, distinguished by the different ways in which
fluid-fluid interfaces arise �14–18�. In mesoscale problems,
where the kinematics of phase separation feature, Swift’s
method �15,17�, based as it is upon Cahn-Hilliard theory,
represents an appropriate choice of MCLB algorithm. For
present purposes, the problem we aim to address contains
completely immiscible liquid-liquid mixtures, considered in
the continuum approximation. For such an application, that
MCLB method with appropriate interfacial kinematics and
dynamics, developed in Refs. �11,12�, is a synthesis of the
interface algorithm of Lishchuk et al. �18� and the method of
Guo et al. �19�, which correctly encapsulates a spatially vari-
able external force and a component phase field for interfa-
cial tension.

TABLE II. Comparison of measured amplitudes with associated
theoretical values. The latter were obtained from Eq. �4� with Wb
=0.021, Re=0.019. The data tabulated here corresponds to the data
shown in Fig. 3, for which inequalities �11� are not all valid.

Amplitude Measured value Theoretical value Ratio

	P2 
�� 3.57�10−3 4.64�10−3 0.77

	P3 
�� 1.43�10−3 2.98�10−3 0.64

	P4 
�� 5.37�10−3

TABLE I. Comparison of measured amplitudes with associated
theoretical values. The latter were obtained from Eq. �4� with Wb
=0.074, Re=0.222. The data tabulated here corresponds to the data
shown in Fig. 3, for which inequalities �11� are valid.

Amplitude Measured value Theoretical value Ratio

	P2 
�� 2.33�10−2 1.60�10−2 0.71

	P3 
�� 4.53�10−3 2.49�10−3 0.55

	P4 
�� 1.72�10−3
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FIG. 4. Measured steady-state deformation of a drop of initial
radius 20 lattice units with physical Wb=0.021,Re=0.019. Mea-
sured interfacial points are shown as open squares; the solid line
corresponds to the optimum fit to Eq. �10�, for which the measured
amplitudes are given in Table II.
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Lishchuk’s method recovers continuum level stress
boundary conditions applied over an interface between com-
pletely separated fluids �9�. The interface is identified by the
coupled phase field. Here, our MCLB has a Lishchuk inter-
face maintained by a fluid-fluid segregation step which uses
an algorithmically simple and very robust process after one
first devised by d’Ortona et al. due to Latva-Kokko et al.
�20� which has been shown to have correct continuum prop-
erties �11� and to allow simple modifications which impart a
behavior approaching continuum kinematics �12�. The inter-
face methods outlined above may be used with a range of
single-component LB variants. Here we use the popular
single-component, isothermal, single relaxation-time LBGK
model of Qian et al. �21�, designated D2Q9 �1�. As with all
LB, its dynamics is a collision followed by a propagation,
over interval �t, of a single-particle distribution function f i
forced described by an evolution equation source term �i�r�:

f i�r + �tci,t + �t� = f i
†�r,t�

= f i�r,t� − ��t�f i�r,t� − f i
�0���,�u�� + �i�r� .

�A1�

In Eq. �A1�, the right- �left-� hand side represents collisions
�propagations�. f i

†�r , t� denotes a post-collision value of dis-
tribution function. Source term �i carries the effect of a mac-
roscopic body force density F�r , t� �which may be the sum of
different contributions� on the lattice fluid, as discussed be-
low. Discrete velocity vectors �or links� ci form the lattice
basis. We use the D2Q9 lattice depicted and indexed in Fig.
5. Each velocity, or link, has an associated weight tp defined
in Table III. Parameter � :0���2 controls the kinematic
viscosity of the fluid �= 1

6 � 2
� −1� 
x2

�t
, where 
x is the lattice

spacing. In Eq. �A1�, � is the macroscopic fluid density and u
its velocity: these quantities determine the equilibrium com-
ponent of the distribution function f i

�0��� ,�u�, which is de-
fined by Guo et al. �19�, in their Eq. �3�. From distribution

function f i �or, indeed, f i
�0��� ,�u�� there emerge macroscopic

observables

� = 
i

f i, �A2�

�u =
1

�


i

f ici +
�t

2
F , �A3�

which satisfy the usual Cartesian continuity equation and a
weakly compressible form of the Navier-Stokes equation,
with a o�1� sonic speed and an external body force

�

�t
� +

�

�x�

�u� = 0, �A4�

�

�t
�u� +

�

�x�

�u�u� =
1

3

�

�x�

� +
�

�x�

�2�����S��� + F�,

�A5�

where ���� is given above. Here S�� is the strain rate tensor
and the model’s sonic speed �the coefficient of the density
variation� cs

2= 1
3


x2

�t
2 , for our particular D2Q9 base model �1�.

As we shall see, separate contributions to the macroscopic
external force, F�, are necessary for interfacial effects �ie.
Laplace pressure and no-traction stress conditions� and to
allow for the presence, given cylindrical symmetry, of geo-
metrical source terms. Note that in this appendix the summa-
tion convention applies only to repeated Greek subscripts.

Using Chapman-Enskog expansion �1,22� on equation
�A1�, Guo et al. determine the evolution equation source
term in equation �A1�, ��r�, in terms of the macroscopic
external force, F�r�:

�i�r� � tp�1 −
�

2
��3�ci − u� + 9�ci · u�ci� · F�r� , �A6�

which expression accords, to o�u�, with that derived much
earlier by He, Chen and Doolen �23�, from an ab initio
second-order accurate integration of the forced Bhatnagar-
Gross-Krook equation �24�.

2. Methodological developments

It is very important to note that Eq. �A6� incorporates the
effects of a variable body force into the Navier-Stokes equa-
tions �A5� but it leaves the form of the continuity equation
unadjusted.

In order to insert into the Cartesian Navier-Stokes and
continuity equations so-called geometrical source terms, we

i=0

i=1 i=2 i=3

i=4

i=5i=6i=7

i=8

FIG. 5. The relative orientation of the nodal velocity set and
subscripting convention for the two-dimensional, nine velocity
D2Q9 lattice. Note that, in general, 
cieven
= 
x

�t
. Note also that links

classified with odd values of subscript i have a larger length. The
weights corresponding to the links shown here are listed in Table
III.

TABLE III. The link weights tp and indexing for the D2Q9
lattice depicted in Fig. 5.

i 0 even odd


ci
 0 1 �2

tp 4 /9 1 /9 1 /36
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require a spatially variable scalar source term in the continu-
ity equation, denoted A�r�:

�t� + ��v� = A . �A7�

The appropriate form of A will be specified below.
We note that Halliday et al. �25� and later Reiss et al. �26�

have previously developed lattice Boltzmann method
schemes for geometrical source terms. The method of Reiss
is particularly effective and consistent: unfortunately both
these previous schemes are complicated to apply to multi-
component applications and we proceed with a modification
of Guo’s methods.

Appropriately to generalize the approach of Guo et al. we
follow the analysis in Ref. �19� as follows. Using their nota-
tion, we follow Guo et al. �19� but, here, we take A�0: that
is, we allow for the presence of the continuity equation
source term A. Guo’s equation �12� for the flux tensor ���

�1�

�1� may be shown, by direct but tedious algebra, to acquire
an additional term in A:

���
�1� = −

�t

�
�v�F� + v�F� + cS

2���v� + ��v��

−
1

2
�C�� + C��� − Av�v�� . �A8�

The above expression for ���
�1� may then be used, still follow-

ing the analysis of Guo et al. �19�, with a modified choice of
their tensor parameter:

C�� = �1 −
�

2
��v�F� + v�F� − Av�b�� −

�

2
cs

2A���

�A9�

so that, from Gou’s Eq. �6�, we may obtain an expression for
an appropriate evolution equation source term �i, which now
depends on the geometrical source A supposed to occur in
the continuity equation

�i = tp�1 −
�

2
��A�i +

1

cs
2F�ci − v� +

1

cs
2 �F · ci��v · ci�� ,

�A10�

where

�i =

2 − �� ci · ci − 2cs
2

2cs
2 �

2 − �
. �A11�

Eq. �A10� replaces Eq. �A6� for situations in which a conti-
nuity equation source term A is required.

As previously stated, for the present situation, the variable
body force density F derived from two independent super-
posable contributions, one applicable throughout the simula-
tion domain, responsible for geometrical effects �identified
below�, the other, applicable only in interfacial regions, for
interfacial effects. We write

F = Fi + Fg �A12�

and proceed first to account for contribution Fi and related
segregation effects. Fluid-fluid interface dynamics are ap-

plied in regions of the lattice where two immiscible fluids
interact �and segregate�. The two fluids concerned are desig-
nated red and blue. The distribution function f i is specified
for these red and blue fluids individually:

f i�r,t� = Ri�r,t� + Bi�r,t� , �A13�

with the nodal density of red and blue fluids

R = 
i

Ri, B = 
i

Bi �A14�

conserved. Where fluids mix, the sum fluid evolves accord-
ing to evolution equation �A1�, interface dynamics being
captured by the force Fi. The mixture is segregated, by a
process which influences the emergent fluids’ dynamics, us-
ing a phase field �N�r�:

�N�r,t� � �R�r,t� − B�r,t�
R�r,t� + B�r,t��, − 1 � �N�r� � 1.

�A15�

Red and blue fluids mix under the propagation step, defining
the interfacial region where an external force is applied to the
sum fluid, capturing the interfacial effects �18�. In segrega-
tion values of Ri and Bi are re-assigned after Latva-Kokko et
al. �20� and d’Ortona et al. �27� using

Ri
†† =

R

R + B
fi

† + �
RB

R + B
tpf̂ · ci,

Bi
†† =

B

R + B
fi

† − �
RB

R + B
tpf̂ · ci. �A16�

in which, e.g., Ri
†† denotes a post-collision, post-segregation

quantity, �=0.7 is an interface thickness parameter, and

f̂ = − n̂ =
��N


��N

�A17�

is the negative of the local interfacial normal. Use of Eq.
�A16�, has been demonstrated to produce the following dy-
namics in the macroscopic phase field �11,12�:

d

dt
�N =

1

2�
� �cs

2�N � � − �NF� . �A18�

In the interfacial region the principal contribution to the lat-
tice density gradient �the interfacial Laplace pressure step� is
the macroscopic surface-tension inducing force, to a good
approximation cs

2���F, and Eq. �A18� closely approxi-
mates a continuum kinematic condition of impenetrability
d�N

dt =0. We note in passing that variation of the phase field
with distance r, measured along a line passing through the
local centre of interfacial curvature, is well approximated in
two dimensions by

�N = tanh���r − R�� , �A19�

where R is local radius of curvature. This fact may be ex-
ploited to control changes of viscosity across the interface.
To produce a kinematic viscosity variation between red and
blue components set:
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���N� =
�B�1 − �N�

2
+

�R�1 + �N�
2

, �A20�

with �R and �B again being chosen so that the kinematic
viscosity of the red and blue fluids is identical. After Lish-
chuk et al. �18�, the Laplace pressure inducing interface
force Fi�r� is proportional to the K local curvature in the �N

field

Fi�r� =
1

2
�K � �N, �A21�

with � the interfacial tension.
In the present work, the system has cylindrical symmetry

in which the êz corresponds to ê� locally. Local curvature, K,
was obtained from a surface gradient measured in a local
Cartesian system:

K = nxny� �

�y
nx +

�

�x
ny� − nx

2 �

�y
ny − ny

2 �

�x
nx, �A22�

where, because the interface normal n̂ is confined to the
plane of lattice nz and, indeed, all z derivatives have been
omitted. In passing we note that all gradients are calculated
numerically, from suitable isotropic, finite differences �28�
which are accurate to o�4� in 
x, and we emphasize again
that the cumulative effect of the force in Eq. �A21� is to
produce a Laplace pressure step in a manner consistent with
other interface effects, e.g., the no-traction stress conditions
�18�. Clearly, for a distributed interface, variation in the mea-
sured curvature must occur along the normal direction,
which calls into question the accuracy of the process by
which the Laplace pressure is imposed. In the next subsec-
tion we will demonstrate that any error associated with this
effect is small.

We now proceed to consider the second contribution to
the macroscopic force acing on the fluid Fs and the associ-
ated continuity equation source. This effective force and con-
tinuity source is responsible for introducing the effects of
cylindrical symmetry. As such, as is to be applied throughout
the simulation domain, not just in interfacial regions. Always
constraining the drop centre to lie on the cylindrical system
axis r=0, and using the mappings

�x,y� → �z,r� , �A23�

�vx,vy� → �Vz,vr� , �A24�

the geometrical source terms for the cylindrical polar coor-
dinate form of the continuity equations is

A = −
1

y
�vy , �A25�

and the geometrical source terms for the cylindrical polar
coordinate form of the Navier-Stokes equation are

Fx
g =

�

y

�

�y
�vx, �A26�

Fy
g =

�

y

�

�y
�vy −

��

y2 vy , �A27�

which, together with the other force contribution in Eq.
�A21� may be incorporated into the expression for F in Eq.
�A12�.

With the macroscopic force evaluated, the expression for
continuity equation source, given in Eq. �A25�, may be used
to evaluate evolution equation source term �i using Eq.
�A10�. Note that isotropic o�4� accurate finite differences
�28� are used to evaluate the gradients in Eqs. �A25�–�A27�.

3. Model analysis

In this subsection we set out to demonstrate that the error
associated with variation of curvature in Lishchuk’s method
�18� is, in the context of the present work, entirely negligible.
We work in lattice units, in two dimensions, placing the local
coordinate origin at the center of the interface, with its x axis
lying along the local interface normal. Accordingly, the in-
terface lies confined to region −
�x�
, where the inter-
face thickness 
 is controlled by parameter � in Eq. �A16�.
The Laplace pressure step accumulated by the action of force
Fs may be obtained from Eq. �A21� as follows:


P =
�

2
�

−





K
d�N

dx
dx =

�

2R
�

−



 �1 +
x

R
�−1d�N

dx
dx ,

�A28�

whence, on using a binomial expansion:


P =
�

2R��−





d�N + 
n=1

�− 1�n

Rn �
−





xnd�N

dx
dx� .

�A29�

Now, for symmetric interval −
�x�
, function d�N

dx has
even parity �see Eq. �A19�� so

�
−





x2n+1d�N

dx
dx = 0 �A30�

and

�
−





d�N = ��N�−


 = 2, �A31�

so Eq. �A29� may be simplified to


P =
�

2R
�2 +

1

R2�2��
� +
1

R4�4��
� + o�R−6�� ,

�A32�

where we have defined

�2n��
� � �
−





x2nd�N

dx
dx . �A33�

Shortly we will drop o�R−5� terms from Eq. �A32�. Using
integration by parts, Eq. �A19� and the substitution y=�x,
definition �A33� becomes
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�2n��
� = 2
2n�1 −
n

��
�2n�
0

�


y2n−1 tanh�y��dy .

�A34�

Now, the practical cutoff for interface force application in
simulations is taken to be 
�N 
 	0.9995. Then 
 is implicitly
defined through the relation tanh��
�=0.999, hence �

�5.0 and, since �=0.7 in our simulations, it follows 

=5 /0.7=7.14. Accordingly, we estimate the integral in the
right-hand side of Eq. �A34� as �0

5y2n−1 tanh�y�dy, where-
upon, on neglect of terms of o�R−4�, we are able to evaluate
the leading terms in Eq. �A32�:


P �
�

R�1 +
7.142

R2 �1 −
2

52�
0

5

y tanh�y�dy�� .

�A35�

Clearly the term in round brackets in the right hand of Eq.
�A35� represents the principal departure from Laplace law
behavior. Using a simple trapezium rule numerical integra-
tion, it evaluates to 0.023. For the case of a local radius of
curvature R=20, this means an error of less that 0.3%.
Clearly, error will increase in inverse proportion to �the
square of� the local radius of curvature but even for a local
radius of curvature as small as R=5, it is less than 2.3%.
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